exp.wiki NEU
WICHTIG: Das exp.wiki wurde aktualisiert und ist ab sofort unter einer neuen Adresse zu erreichen: https://exparch-www.uibk.ac.at/testwiki
Bitte das Anlegen neuer Seiten oder die Änderungen bestehender ab sofort ausschließlich dort durchführen.
Bestehende Projektseiten wurden/werden migriert und sind auch auf der neuen Plattform vorhanden.

Hilfe:Mathematische Formeln

Aus exp.wiki

Wechseln zu: Navigation, Suche

Es gibt die möglichkeit, in Wiki-Texte mathematische Formeln in korrekter Darstellung einzubauen.

Dazu wird eine Standard-Syntax (LaTex) verwendet:

aus z. B.

\frac12\int_{a+b+c}^{d+e+f}g(x)dx

wird

LaTeX: \frac12\int_{a+b+c}^{d+e+f}g(x)dx


Weiterführende Informationen zur Verwendung von mathematischen Formeln in exp.wiki und Hochbau Forum (in englischer Sprache):

Tutorial zu mathematischer Schreibweise in Mimetex/LaTex beinhaltet auch eine Sandbox zum Ausprobieren und Trainieren

Beispiele zu Mimetex/LaTex zeigen verschiedenste Einsatzmöglichkeiten der Mimetex-Syntax




Inhaltsverzeichnis


Syntax

Math markup goes inside <tex> ... </tex>. The edit toolbar has a button for this.

Similar to HTML, in TeX extra spaces and newlines are ignored.

The TeX code has to be put literally: MediaWiki templates, predefined templates, and parameters cannot be used within math tags: pairs of double braces are ignored and "#" gives an error message. However, math tags work in the then and else part of #if, etc.

Rendering

The PNG images are black on white (not transparent). These colors, as well as font sizes and types, are independent of browser settings or CSS. Font sizes and types will often deviate from what HTML renders. Vertical alignment with the surrounding text can also be a problem. The css selector of the images is img.tex. LaTeX: sin a

The alt attribute of the PNG images (the text that is displayed if your browser can't display images; Internet Explorer shows it up in the hover box) is the wikitext that produced them, excluding the <tex> and </tex>.

Apart from function and operator names, as is customary in mathematics for variables, letters are in italics; digits are not. For other text, (like variable labels) to avoid being rendered in italics like variables, use \mbox or \mathrm. For example, <tex>\mbox{abc}</tex> gives LaTeX: \mbox{abc}.

TeX vs HTML

Before introducing TeX markup for producing special characters, it should be noted that, as this comparison table shows, sometimes similar results can be achieved in HTML (see Special characters).

TeX Syntax (forcing PNG) TeX Rendering HTML Syntax HTML Rendering
<tex>\alpha\,</tex> LaTeX: \alpha\, &alpha; α
<tex>\sqrt{2}</tex> LaTeX: \sqrt{2} &radic;2 √2
<tex>\sqrt{1-e^2}</tex> LaTeX: \sqrt{1-e^2} &radic;(1&minus;''e''&sup2;) √(1−e²)

The codes on the left produce the symbols on the right, but the latter can also be put directly in the wikitext.

&alpha; &beta; &gamma; &delta; &epsilon; &zeta;
&eta; &theta; &iota; &kappa; &lambda; &mu; &nu;
&xi; &omicron; &pi; &rho;  &sigma; &sigmaf;
&tau; &upsilon; &phi; &chi; &psi; &omega;
&Gamma; &Delta; &Theta; &Lambda; &Xi; &Pi;
&Sigma; &Phi; &Psi; &Omega;

α β γ δ ε ζ
η θ ι κ λ μ ν
ξ ο π ρ σ ς
τ υ φ χ ψ ω
Γ Δ Θ Λ Ξ Π
Σ Φ Ψ Ω

&int; &sum; &prod; &radic; &minus; &plusmn; &infin;
&asymp; &prop; &equiv; &ne; &le; &ge; 
&times; &middot; &divide; &part; &prime; &Prime;
&nabla; &permil; &deg; &there4; &oslash; &oslash;
&isin; &notin; &cap; &cup; &sub; &sup; &sube; &supe;
&not; &and; &or; &exist; &forall; &rArr; &hArr;
&rarr; &harr; &uarr; &alefsym;
- &ndash; &mdash;

∫ ∑ ∏ √ − ± ∞
≈ ∝ ≡ ≠ ≤ ≥
× · ÷ ∂ ′ ″
∇ ‰ ° ∴ Ø ø
∈ ∉ ∩ ∪ ⊂ ⊃ ⊆ ⊇
¬ ∧ ∨ ∃ ∀ ⇒ ⇔
→ ↔ ↑ ℵ
- – —

The use of HTML instead of TeX is still under discussion. The arguments either way can be summarised as follows.

Pros of HTML

  1. In-line HTML formulae always align properly with the rest of the HTML text.
  2. The formula's background, font size and face match the rest of HTML contents and the appearance respects CSS and browser settings.
  3. Pages using HTML will load faster.

Pros of TeX

  1. TeX is semantically superior to HTML. In TeX, "<tex>x</tex>" means "mathematical variable LaTeX: x", whereas in HTML "x" could mean anything. Information has been irrevocably lost.
  2. TeX has been specifically designed for typesetting formulae, so input is easier and more natural, and output is more aesthetically pleasing.
  3. One consequence of point 1 is that TeX can be transformed into HTML, but not vice-versa. This means that on the server side we can always transform a formula, based on its complexity and location within the text, user preferences, type of browser, etc. Therefore, where possible, all the benefits of HTML can be retained, together with the benefits of TeX. It's true that the current situation is not ideal, but that's not a good reason to drop information/contents.
  4. Another consequence of point 1 is that TeX can be converted to MathML for browsers which support it, thus keeping its semantics and allowing it to be renderred vectorially.
  5. When writing in TeX, editors need not worry about whether this or that version of this or that browser supports this or that HTML entity. The burden of these decisions is put on the server. This doesn't hold for HTML formulae, which can easily end up being rendered wrongly or differently from the editor's intentions on a different browser.
  6. TeX is the preferred text formatting language of most professional mathematicians, scientists, and engineers. It is easier to persuade them to contribute if they can write in TeX.

Functions, symbols, special characters

Accents/Diacritics

\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a} LaTeX: \acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\!
\check{a} \bar{a} \ddot{a} \dot{a} LaTeX: \check{a} \bar{a} \ddot{a} \dot{a}\,\!

Standard functions

\sin a \cos b \tan c LaTeX: \sin a \cos b \tan c\,\!
\sec d \csc e \cot f LaTeX: \sec d \csc e \cot f\,\!
\arcsin h \arccos i \arctan j LaTeX: \arcsin h \arccos i \arctan j\,\!
\sinh k \cosh l \tanh m \coth n LaTeX: \sinh k \cosh l \tanh m \coth n\,\!
\operatorname{sh}o \operatorname{ch}p \operatorname{th}q LaTeX: \operatorname{sh}o \operatorname{ch}p \operatorname{th}q\,\!
\operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t LaTeX: \operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t\,\!
\lim u \limsup v \liminf w \min x \max y LaTeX: \lim u \limsup v \liminf w \min x \max y\,\!
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g LaTeX: \inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\,\!
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n LaTeX: \deg h \gcd i \Pr j \det k \hom l \arg m \dim n\,\!

Modular arithmetic

s_k \equiv 0 \pmod{m} a \bmod b LaTeX: s_k \equiv 0 \pmod{m} a \bmod b\,\!

Derivatives

\nabla \partial x dx \dot x \ddot y LaTeX: \nabla \partial x dx \dot x \ddot y\,\!

Sets

\forall \exists \empty \emptyset LaTeX: \forall \exists \empty \emptyset\,\!
\in \ni \not \in \notin \subset \subseteq \supset \supseteq LaTeX: \in \ni \not \in \notin \subset \subseteq \supset \supseteq\,\!
\cap \bigcap \cup \bigcup \biguplus \setminus LaTeX: \cap \bigcap \cup \bigcup \biguplus \setminus\,\!
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup LaTeX: \sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\!

Operators

+ \oplus \bigoplus \pm \mp - LaTeX: + \oplus \bigoplus \pm \mp - \,\!
\times \otimes \bigotimes \cdot \circ \bullet \bigodot LaTeX: \times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\!
\star * / \div \frac{1}{2} LaTeX: \star * / \div \frac{1}{2}\,\!

Logic

\wedge \bigwedge \bar{q} \to p LaTeX: \wedge \bigwedge \bar{q} \to p\,\!
\vee \bigvee \neg q LaTeX: \vee \bigvee \neg q \,\!

Root

\sqrt{2} \sqrt[n]{x} LaTeX: \sqrt{2} \sqrt[n]{x}\,\!

Relations

\sim \approx \simeq \dot= \overset{\underset{\mathrm{def}}{}}{=} LaTeX: \sim \approx \simeq \dot=  \overset{\underset{\mathrm{def}}{}}{=}\,\!
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto LaTeX: \le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto\,\!

Geometric

\Diamond \triangle \angle \perp \mid \| 45^\circ LaTeX: \Diamond \, \triangle \, \angle \perp \, \mid \; \| 45^\circ\,\!

Arrows

\leftarrow (or \gets) \rightarrow (or \to) \not\to \leftrightarrow \longleftarrow \longrightarrow \longleftrightarrow LaTeX: \leftarrow \rightarrow \not\to \leftrightarrow \longleftarrow \longrightarrow \longleftrightarrow \,\!
\Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow (or \iff) LaTeX: \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow \,\!
\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow LaTeX: \uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow  \nearrow \searrow \swarrow \nwarrow \,\!

Special

\S \P \% \dagger \ddagger \ldots \cdots LaTeX: \S \P \% \dagger \ddagger \ldots \cdots\,\!
\smile \frown \wr \triangleleft \triangleright \infty \bot \top LaTeX: \smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\!
\vdash \imath \hbar LaTeX: \vdash \imath \hbar\,\!
\ell \Finv \Re \Im \wp LaTeX: \ell \Finv \Re \Im \wp\,\!
\clubsuit \spadesuit \flat \natural \sharp LaTeX: \clubsuit \spadesuit \flat \natural \sharp\,\!


Subscripts, superscripts, integrals

FeatureSyntaxHow it looks rendered
HTMLPNG
Superscripta^2LaTeX: a^2LaTeX: a^2 \,\!
Subscripta_2LaTeX: a_2LaTeX: a_2 \,\!
Groupinga^{2+2}LaTeX: a^{2+2}LaTeX: a^{2+2}\,\!
a_{i,j}LaTeX: a_{i,j}LaTeX: a_{i,j}\,\!
Combining sub & superx_2^3LaTeX: x_2^3
Super super10^{10^{ \,\!{8} }LaTeX: 10^{10^{ \,\! 8 } }
Super super10^{10^{ \overset{8}{} }}LaTeX: 10^{10^{ \overset{8}{} }}
Super super (wrong in HTML in some browsers)10^{10^8} LaTeX: 10^{10^8}
Preceding and/or Additional sub & super{_1^2}{_3^4}\prod_a^bLaTeX: {_1^2}{_3^4}\prod_a^b
{}_1^2\!\Omega_3^4LaTeX: {}_1^2\!\Omega_3^4
Stacking \overset{\alpha}{\omega}LaTeX: \overset{\alpha}{\omega}
\underset{\alpha}{\omega}LaTeX: \underset{\alpha}{\omega}
\overset{\alpha}{\underset{\gamma}{\omega}}LaTeX: \overset{\alpha}{\underset{\gamma}{\omega}}
\stackrel{\alpha}{\omega}LaTeX: \stackrel{\alpha}{\omega}
Derivative (forced PNG)x', y'', f', f''\! LaTeX: x', y'', f', f''\!
Derivative (f in italics may overlap primes in HTML)x', y'', f', f''LaTeX: x', y'', f', f''LaTeX: x', y'', f', f''\!
Derivative (wrong in HTML)x^\prime, y^{\prime\prime}LaTeX: x^\prime, y^{\prime\prime}LaTeX: x^\prime, y^{\prime\prime}\,\!
Derivative (wrong in PNG)x\prime, y\prime\primeLaTeX: x\prime, y\prime\primeLaTeX: x\prime, y\prime\prime\,\!
Derivative dots\dot{x}, \ddot{x}LaTeX: \dot{x}, \ddot{x}
Underlines, overlines, vectors\hat a \ \bar b \ \vec cLaTeX: \hat a \ \bar b \ \vec c
{a b} \ {c d} \ \widehat{d e f}LaTeX: {a b} \ {c d} \ \widehat{d e f}
\overline{g h i} \ \underline{j k l}LaTeX: \overline{g h i} \ \underline{j k l}
Overbraces\overbrace{ 1+2+\cdots+100 }^{5050}LaTeX: \overbrace{ 1+2+\cdots+100 }^{5050}
Underbraces\underbrace{ a+b+\cdots+z }_{26}LaTeX: \underbrace{ a+b+\cdots+z }_{26}
Sum\sum_{k=1}^N k^2LaTeX: \sum_{k=1}^N k^2
Sum (force \textstyle)\textstyle \sum_{k=1}^N k^2 LaTeX: \textstyle \sum_{k=1}^N k^2
Product\prod_{i=1}^N x_iLaTeX: \prod_{i=1}^N x_i
Product (force \textstyle)\textstyle \prod_{i=1}^N x_iLaTeX: \textstyle \prod_{i=1}^N x_i
Coproduct\coprod_{i=1}^N x_iLaTeX: \coprod_{i=1}^N x_i
Coproduct (force \textstyle)\textstyle \coprod_{i=1}^N x_iLaTeX: \textstyle \coprod_{i=1}^N x_i
Limit\lim_{n \to \infty}x_nLaTeX: \lim_{n \to \infty}x_n
Limit (force \textstyle)\textstyle \lim_{n \to \infty}x_nLaTeX: \textstyle \lim_{n \to \infty}x_n
Integral\int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dxLaTeX: \int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx
Integral (alternate limits style)\int_{1}^{3}\frac{e^3/x}{x^2}\, dxLaTeX: \int_{1}^{3}\frac{e^3/x}{x^2}\, dx
Integral (force \textstyle)\textstyle \int\limits_{-N}^{N} e^x\, dxLaTeX: \textstyle \int\limits_{-N}^{N} e^x\, dx
Integral (force \textstyle, alternate limits style)\textstyle \int_{-N}^{N} e^x\, dxLaTeX: \textstyle \int_{-N}^{N} e^x\, dx
Double integral\iint\limits_{D} \, dx\,dyLaTeX: \iint\limits_{D} \, dx\,dy
Triple integral\iiint\limits_{E} \, dx\,dy\,dzLaTeX: \iiint\limits_{E} \, dx\,dy\,dz
Path integral\oint\limits_{C} x^3\, dx + 4y^2\, dyLaTeX: \oint\limits_{C} x^3\, dx + 4y^2\, dy
Intersections\bigcap_1^{n} pLaTeX: \bigcap_1^{n} p
Unions\bigcup_1^{k} pLaTeX: \bigcup_1^{k} p

Fractions, matrices, multilines

Feature Syntax How it looks rendered
Fractions \frac{2}{4}=0.5 LaTeX: \frac{2}{4}=0.5
Matrices
\begin{matrix}
  x & y \\
  z & v 
\end{matrix}
LaTeX: \begin{matrix} x & y \\ z & v
\end{matrix}
\begin{vmatrix}
  x & y \\
  z & v 
\end{vmatrix}
LaTeX: \begin{vmatrix} x & y \\ z & v
\end{vmatrix}
\begin{Vmatrix}
  x & y \\
  z & v
\end{Vmatrix}
LaTeX: \begin{Vmatrix} x & y \\ z & v
\end{Vmatrix}
\begin{bmatrix}
  0      & \cdots & 0      \\
  \vdots & \ddots & \vdots \\ 
  0      & \cdots & 0
\end{bmatrix}
LaTeX: \begin{bmatrix} 0 & \cdots & 0 \\ \vdots
<p>& \ddots & \vdots \\ 0 & \cdots &
</p>
0\end{bmatrix}
\begin{Bmatrix}
  x & y \\
  z & v
\end{Bmatrix}
LaTeX: \begin{Bmatrix} x & y \\ z & v
\end{Bmatrix}
\begin{pmatrix}
  x & y \\
  z & v 
\end{pmatrix}
LaTeX: \begin{pmatrix} x & y \\ z & v
\end{pmatrix}
Case distinctions
f(n) = 
\begin{cases} 
  n/2,  & \mbox{if }n\mbox{ is even} \\
  3n+1, & \mbox{if }n\mbox{ is odd} 
\end{cases}
LaTeX: f(n) = 
<p>\begin{cases}
</p>
<pre> n/2,  & \mbox{if }n\mbox{ is even} \\ 
 3n+1, & \mbox{if }n\mbox{ is odd} 
</pre>
\end{cases}
Multiline equations
\begin{align}
 f(x) & = (a+b)^2 \\
      & = a^2+2ab+b^2 \\
\end{align}
LaTeX: 
<p>\begin{align}
</p>
<pre>f(x) & = (a+b)^2 \\
     & = a^2+2ab+b^2 \\
</pre>
<p>\end{align}
</p>
Multiline equations (must define number of colums used ({lcr}) (should not be used unless needed)
\begin{array}{lcl}
  z        & = & a \\
  f(x,y,z) & = & x + y + z  
\end{array}
LaTeX: \begin{array}{lcl}
<pre> z        & = & a \\
 f(x,y,z) & = & x + y + z  
</pre>
\end{array}
Multiline equations (more)
\begin{array}{lcr}
  z        & = & a \\
  f(x,y,z) & = & x + y + z     
\end{array}
LaTeX: \begin{array}{lcr}
<pre> z        & = & a \\
 f(x,y,z) & = & x + y + z     
</pre>
\end{array}
Breaking up a long expression so that it wraps when necessary

<tex>f(x) \,\!</tex>
<tex>= \sum_{n=0}^\infty a_n x^n </tex>
<tex>= a_0+a_1x+a_2x^2+\cdots</tex>

LaTeX: f(x) \,\!LaTeX: = \sum_{n=0}^\infty a_n x^n LaTeX: = a_0 +a_1x+a_2x^2+\cdots

Simultaneous equations
\begin{cases}
    3x + 5y +  z \\
    7x - 2y + 4z \\
   -6x + 3y + 2z 
\end{cases}
LaTeX: \begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}
Arrays
\begin{array}{|c|c||c|} a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0\\
\end{array}
LaTeX: 
<p>\begin{array}{|c|c||c|} a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0\\
\end{array}
</p>

Alphabets and typefaces

Mimetex cannot render arbitrary Unicode characters. Those it can handle can be entered by the below expressions. For others, such as Cyrillic, they can be entered as Unicode or HTML entities in running text, but cannot be used in displayed formulas.

Greek alphabet
\Gamma \Delta LaTeX: \Gamma \Delta \,\!
\Theta \Lambda LaTeX: \Theta \Lambda \,\!
\Xi \Pi \Sigma LaTeX: \Xi \Pi \Sigma \,\!
\Upsilon \Phi \Psi \Omega LaTeX: \Upsilon \Phi \Psi \Omega \,\!
\alpha \beta \gamma \delta \epsilon \zeta LaTeX: \alpha \beta \gamma \delta \epsilon \zeta \,\!
\eta \theta \iota \kappa \lambda \mu LaTeX: \eta \theta \iota \kappa \lambda \mu \,\!
\nu \xi \pi \rho \sigma \tau LaTeX: \nu \xi \pi \rho \sigma \tau \,\!
\upsilon \phi \chi \psi \omega LaTeX: \upsilon \phi \chi \psi \omega \,\!
\varepsilon \vartheta LaTeX: \varepsilon \vartheta \,\!
\varpi \varrho \varsigma \varphi LaTeX: \varpi \varrho \varsigma \varphi\,\!
Blackboard Bold/Scripts
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} LaTeX: \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\!
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} LaTeX: \mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\!
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} LaTeX: \mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\!
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z} LaTeX: \mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\!
boldface (vectors)
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} LaTeX: \mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\!
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} LaTeX: \mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\!
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} LaTeX: \mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\!
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} LaTeX: \mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\!
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} LaTeX: \mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\!
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} LaTeX: \mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\!
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} LaTeX: \mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\!
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} LaTeX: \mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\!
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} LaTeX: \mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\!
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9} LaTeX: \mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\!
Italics
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} LaTeX: \mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\!
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} LaTeX: \mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\!
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} LaTeX: \mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\!
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} LaTeX: \mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\!
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} LaTeX: \mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\!
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} LaTeX: \mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\!
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} LaTeX: \mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\!
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} LaTeX: \mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\!
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} LaTeX: \mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\!
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9} LaTeX: \mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\!
Roman typeface
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} LaTeX: \mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\!
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} LaTeX: \mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\!
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} LaTeX: \mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\!
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} LaTeX: \mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\!
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g} LaTeX: \mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\!
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} LaTeX: \mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\!
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} LaTeX: \mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\!
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} LaTeX: \mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\!
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} LaTeX: \mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\!
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9} LaTeX: \mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\!
Fraktur typeface
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} LaTeX: \mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\!
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} LaTeX: \mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\!
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} LaTeX: \mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\!
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} LaTeX: \mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\!
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} LaTeX: \mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\!
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} LaTeX: \mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\!
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} LaTeX: \mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\!
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} LaTeX: \mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\!
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} LaTeX: \mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\!
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9} LaTeX: \mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\!
Calligraphy/Script
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} LaTeX: \mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\!
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} LaTeX: \mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\!
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} LaTeX: \mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\!
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z} LaTeX: \mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\!
Hebrew
\aleph LaTeX: \aleph \,\!
Feature Syntax How it looks rendered
non-italicised characters \mbox{abc} LaTeX: \mbox{abc} LaTeX: \mbox{abc} \,\!
mixed italics (bad) \mbox{if} n \mbox{is even} LaTeX: \mbox{if} n \mbox{is even} LaTeX: \mbox{if} n \mbox{is even} \,\!
mixed italics (good) \mbox{if }n\mbox{ is even} LaTeX: \mbox{if }n\mbox{ is even} LaTeX: \mbox{if }n\mbox{ is even} \,\!
mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space) \mbox{if}~n\ \mbox{is even} LaTeX: \mbox{if}~n\ \mbox{is even} LaTeX: \mbox{if}~n\ \mbox{is even} \,\!

Parenthesizing big expressions, brackets, bars

Feature Syntax How it looks rendered
Bad ( \frac{1}{2} ) LaTeX: ( \frac{1}{2} )
Good \left ( \frac{1}{2} \right ) LaTeX: \left ( \frac{1}{2} \right )

You can use various delimiters with \left and \right:

Feature Syntax How it looks rendered
Parentheses \left ( \frac{a}{b} \right ) LaTeX: \left ( \frac{a}{b} \right )
Brackets \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack LaTeX: \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack
Braces \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace LaTeX: \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace
Angle brackets \left \langle \frac{a}{b} \right \rangle LaTeX: \left \langle \frac{a}{b} \right \rangle
Bars and double bars \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| LaTeX: \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|
Floor and ceiling functions: \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil LaTeX: \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil
Slashes and backslashes \left / \frac{a}{b} \right \backslash LaTeX: \left / \frac{a}{b} \right \backslash
Up, down and up-down arrows \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow LaTeX: \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow

Delimiters can be mixed,
as long as \left and \right match

\left [ 0,1 \right )
\left \langle \psi \right |

LaTeX: \left [ 0,1 \right )
LaTeX: \left \langle \psi \right |

Use \left. and \right. if you don't
want a delimiter to appear:
\left . \frac{A}{B} \right \} \to X LaTeX: \left . \frac{A}{B} \right \} \to X
Size of the delimiters \big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]

LaTeX: \big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]

\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle

LaTeX: \big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle

Spacing

Note that TeX handles most spacing automatically, but you may sometimes want manual control.

Feature Syntax How it looks rendered
double quad space a \qquad b LaTeX: a \qquad b
quad space a \quad b LaTeX: a \quad b
text space a\ b LaTeX: a\ b
text space without PNG conversion a \mbox{ } b LaTeX: a \mbox{ } b
large space a\;b LaTeX: a\;b
medium space a\>b [not supported]
small space a\,b LaTeX: a\,b
no space ab LaTeX: ab\,
small negative space a\!b LaTeX: a\!b

Align with normal text flow

Due to the default css

img.tex { vertical-align: middle; }

an inline expression like LaTeX: \int_{-N}^{N} e^x\, dx should look good.

If you need to align it otherwise, use <font style="vertical-align:-100%;"><tex>...</tex></font> and play with the vertical-align argument until you get it right; however, how it looks may depend on the browser and the browser settings.

Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.

Forced PNG rendering

To force the formula to render as PNG, add \, (small space) at the end of the formula (where it is not rendered). This will force PNG if the user is in "HTML if simple" mode, but not for "HTML if possible" mode (math rendering settings in preferences).

You can also use \,\! (small space and negative space, which cancel out) anywhere inside the math tags. This does force PNG even in "HTML if possible" mode, unlike \,.

This could be useful to keep the rendering of formulae in a proof consistent, for example, or to fix formulae that render incorrectly in HTML (at one time, a^{2+2} rendered with an extra underscore), or to demonstrate how something is rendered when it would normally show up as HTML (as in the examples above).

For instance:

Syntax How it looks rendered
a^{c+2} LaTeX: a^{c+2}
a^{c+2} \, LaTeX: a^{c+2} \,
a^{\,\!c+2} LaTeX: a^{\,\!c+2}
a^{b^{c+2}} LaTeX: a^{b^{c+2}} (WRONG with option "HTML if possible or else PNG"!)
a^{b^{c+2}} \, LaTeX: a^{b^{c+2}} \, (WRONG with option "HTML if possible or else PNG"!)
a^{b^{c+2}}\approx 5 LaTeX: a^{b^{c+2}}\approx 5 (due to "LaTeX: \approx" correctly displayed, no code "\,\!" needed)
a^{b^{\,\!c+2}} LaTeX: a^{b^{\,\!c+2}}
\int_{-N}^{N} e^x\, dx LaTeX: \int_{-N}^{N} e^x\, dx


This has been tested with most of the formulae on this page, and seems to work perfectly.

You might want to include a comment in the HTML so people don't "correct" the formula by removing it:

<!-- The \,\! is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->

Color

Equations can use color:

  • {\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1}
    LaTeX: {\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1}
  • x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
    LaTeX: x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}

See here for all named colors supported by LaTeX.

Note that color should not be used as the only way to identify something, because it will become meaningless on black-and-white media or for color-blind people. See Manual of Style: Color Coding.


Examples

Quadratic Polynomial

LaTeX: ax^2 + bx + c = 0

<tex>ax^2 + bx + c = 0</tex>

Quadratic Polynomial (Force PNG Rendering)

LaTeX: ax^2 + bx + c = 0\,\!

<tex>ax^2 + bx + c = 0\,\!</tex>

Quadratic Formula

LaTeX: x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

<tex>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</tex>

Tall Parentheses and Fractions

LaTeX: 2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)

<tex>2 = \left(
 \frac{\left(3-x\right) \times 2}{3-x}
 \right)</tex>
LaTeX: S_{new} = S_{old} - \frac{ \left( 5-T \right) ^2} {2}

 <tex>S_{new} = S_{old} - \frac{ \left( 5-T \right) ^2} {2}</tex>
 

Integrals

LaTeX: \int_a^x \int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy

<tex>\int_a^x \int_a^s f(y)\,dy\,ds
 = \int_a^x f(y)(x-y)\,dy</tex>

Summation

LaTeX: \sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)}
<tex>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}
 {3^m\left(m\,3^n+n\,3^m\right)}</tex>

Differential Equation

LaTeX: u'' + p(x)u' + q(x)u=f(x),\quad x>a

<tex>u'' + p(x)u' + q(x)u=f(x),\quad x>a</tex>

Complex numbers

LaTeX: |\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)

<tex>|\bar{z}| = |z|,
 |(\bar{z})^n| = |z|^n,
 \arg(z^n) = n \arg(z)</tex>

Limits

LaTeX: \lim_{z\rightarrow z_0} f(z)=f(z_0)

<tex>\lim_{z\rightarrow z_0} f(z)=f(z_0)</tex>

Integral Equation

LaTeX: \phi_n(\kappa)
= \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R}  \frac{\partial}{\partial R}  \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR

<tex>\phi_n(\kappa) =
 \frac{1}{4\pi^2\kappa^2} \int_0^\infty
 \frac{\sin(\kappa R)}{\kappa R}
 \frac{\partial}{\partial R}
 \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</tex>

Example

LaTeX: \phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}

<tex>\phi_n(\kappa) = 
 0.033C_n^2\kappa^{-11/3},\quad
 \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</tex>

Continuation and cases

LaTeX: f(x) = \begin{cases}1 & -1 \le x < 0 \\
\frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise}\end{cases}

<tex>
 f(x) =
 \begin{cases}
 1 & -1 \le x < 0 \\
 \frac{1}{2} & x = 0 \\
 1 - x^2 & \mbox{otherwise}
 \end{cases}
 </tex>

Prefixed subscript

LaTeX: {}_pF_q(a_1,...,a_p;c_1,...,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}\frac{z^n}{n!}

 <tex>{}_pF_q(a_1,...,a_p;c_1,...,c_q;z)
 = \sum_{n=0}^\infty
 \frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}
 \frac{z^n}{n!}</tex>


See also

Persönliche Werkzeuge